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Abstract
A real-space atomistic refinement approach to the analysis of experimental
electron diffraction patterns is described. The method employs the
reverse Monte Carlo algorithm to produce atomistic configurations capable
of qualitatively reproducing diffuse electron scattering patterns. Its
implementation in the program EDRMC is described in detail, together with
a number of additional constraints/restraints that can be used to guide the
refinement process. In particular, appropriate restraints ensure the individual
atomic displacements introduced to model the diffuse scattering patterns are
simultaneously consistent with the known average structure. The approach is
then used to interpret electron diffraction patterns measured for Bi2Ru2O7−δ.
The diffuse scattering patterns observed are shown to arise primarily from
concerted translations of Bi atoms. These translations can be interpreted in
terms of rotations of [O′Bi4] tetrahedra correlated along the 〈110〉 crystal axes
and uncorrelated along orthogonal directions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electron diffraction is well established as a method of choice for the experimental determination
of single-crystal structured diffuse scattering patterns [1]. Similar information can of course be
measured using x-rays or neutrons, but electron diffraction—while only semi-quantitative—
boasts the advantages of increased diffuse intensity, ready accessibility and the routine ability
to focus on very small crystallites (around 0.5 μm). The geometry and relative intensities of
the diffuse scattering patterns so determined invariably contain valuable information regarding
disorder in crystalline materials—whether compositional or displacive, dynamic or static [2–7].
While it is a relatively straightforward process to calculate the diffuse scattering one expects for
a system where the mechanism of disorder is already known, the inverse exercise of deducing
the type of disorder from a given diffuse scattering pattern is in general far from trivial. And
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yet understanding crystalline disorder is key to appreciating a wide range of important physical
behaviours, including high-Tc superconductivity [8], colossal magnetoresistance [9], solid-state
ion transport [10], negative thermal expansion [11] and the existence of phase transitions [12]
and unusual electronic properties [13]. Certainly, recognisable general trends do emerge:
particular patterns of diffuse scattering will often be associated with the same general processes
across broad structural families [1]. However, there is a strong drive to develop methods of
analysing diffuse scattering patterns in more general terms, in an effort to understand disorder
in increasingly diverse systems.

One approach is to use atomistic simulation methods, such as the Monte Carlo approach,
to ‘test’ possible disorder mechanisms for a given system of interest [4]. An appropriate inte-
raction potential (or ensemble of potentials) is used to drive the simulation, and then diffuse
scattering patterns are calculated from the refined equilibrium configurations. Since one is gen-
erally interested primarily in the form of the potential rather than the precise values of its various
parameters, only qualitative similarity between the calculated and observed diffuse scattering
patterns is ever demanded. In many instances this approach yields very satisfactory results, par-
ticularly when applied in conjunction with a sound knowledge of crystal chemistry. However,
there always remains the inherent presupposition of a particular disorder mechanism, and so the
approach is of more limited use whenever an appropriate mechanism is not known a priori. This
limitation can be circumvented somewhat by iterative refinement of the form of the potential
itself—an approach implemented with obvious success in the EPSR method, designed for use
with one-dimensional diffraction data (such as collected from powders, liquids or amorphous
materials) [14]. While similar approaches have been proposed for single-crystal calculations,
the sheer magnitude of computation involved has generally proven prohibitive [15].

The reverse Monte Carlo (RMC) approach [16] would seem to offer a particularly attractive
alternative, since its refinement of atomistic models is driven by experimental data rather than
by pre-determined interaction potentials. Indeed RMC-based methods for refining structural
models against single-crystal neutron [17] and x-ray [18–20] diffuse scattering patterns have
been reported previously, and have been shown capable of providing reliable information
regarding occupational and displacement correlations. The extension to refinement of electron
diffraction data follows rather straightforwardly, and it is perhaps surprising that its use appears
not to have been reported (other than for orientationally averaged data—see, for example [21]).
The relative ease with which high-quality electron diffraction images can be obtained for
multiple sections of reciprocal space, and the capacity to measure single-crystal data from
polycrystalline samples, are both strongly motivating factors for the development of an electron
diffraction RMC (EDRMC) approach.

In this paper we describe such an approach for producing real-space atomistic
configurations consistent with electron diffuse scattering patterns, and outline some methods
for interpreting these configurations in terms of the underlying processes responsible for the
observed diffuse scattering. We apply this technique to the pyrochlore Bi2Ru2O7−δ and show
that the structured diffuse scattering observed for this material can be attributed to correlated
rotations of one-dimensional chains of [OBi4] tetrahedra. In the process of this case study we
identify some limitations in the proposed approach and highlight aspects where particular care
must be taken in order to avoid the generation of spurious results.

2. EDRMC implementation

2.1. Overview

The basic structure of our EDRMC method is common to many such approaches, notably
including the RMCPOW [22, 23], RMCProfile [24] and RMC++ [25] programs. A
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configurational box, containing a large collection of atoms and subject to periodic boundary
conditions, represents a crystallographic supercell of the material in question. Atoms within
this configuration are iteratively selected and then moved at random so as to minimize the value
of an ‘overall mismatch function’ χ2

tot, which measures the degree to which the configuration
deviates from a set of ideal parameters (fits to data, constraints and/or restraints), weighted
appropriately. Proposed moves are accepted or rejected according to the Metropolis Monte
Carlo algorithm until the value of χ2 has converged, when the system is said to be at
equilibrium. Equilibrium configurations are not unique but share the same overall similarity
to the data and/or restraints applied.

In developing the EDRMC method, we have been forced to address the difficult issue of
quantifying intensities in electron diffraction data. Unlike neutron and x-ray data, the placing of
scattered intensities on an absolute scale is impractical for electron diffraction patterns: the data
are complicated by multiple scattering effects and thickness dependence [1]. Consequently, any
approach to model electron diffraction data using atomistic models cannot reasonably expect
to provide quantitative agreement; nor would quantitative agreement be especially meaningful
were it achieved. As such, our EDRMC approach aims only to fit electron diffraction patterns
after suitable scale and offset factors have been applied to each image—the emphasis being to
reproduce the observed patterns rather than absolute intensities.

In order to guide the refinement process and to provide some limits on the magnitude of
atomic displacements in our models (which might be too weakly constrained if compared only
against scattering patterns with arbitrary scale), we have implemented a number of additional
constraints and/or restraints within our fitting process; these are described in greater detail
below. Whether these constraints/restraints are appropriate for a given system may not always
prove obvious, and some care must be taken when choosing which (if any) to enforce. The
‘mismatch’ associated with each term is simply added together to give the ‘overall mismatch
function’:

χ2
tot = χ2

diff + χ2
BV + χ2

avg. (1)

Here, ‘diff’ signifies the contribution due to any difference between calculated and observed
diffuse scattering patterns, ‘BV’ that of bond valence sums, and ‘avg’ that of average structure
factors. Each of these terms is discussed in more detail below.

2.2. Diffuse scattering calculations

Experimental diffuse scattering patterns are converted into EDRMC input data by indexing
each image i to give a set of intensities Ii (k) for the vectors k in some set Di . We then use the
method of Butler and Welberry [26] to calculate diffuse scattering intensities from the EDRMC
configurations for comparison. In this method, intensities are calculated via the diffuse structure
factors A(k), defined as

A(k) =
∑

j

{
f j (k)

∑

�

exp[ik · r( j�)] − 〈F(k)〉ψ(k)
}
. (2)

Here, f j (k) is the electron scattering form factor of each atom type j , 〈F(k)〉 the average unit
cell structure factor and ψ(k) an interference function given by

ψ(k) =
∏

α∈{x,y,z}

exp(ikαNα)− 1

exp(ikα)− 1
, (3)

for a configuration with Nx , Ny , Nz unit cells along the three crystallographic axes. This
method is ideal because it separates out from the total scattering function that component due
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to the average periodicity of the configuration itself, and so provides a better comparison with
the experimental diffuse scattering patterns. Moreover, it is possible to average over the diffuse
scattering intensities calculated from a set of ‘sub-boxes’ of the overall configuration to further
improve the ‘smoothness’ of the resultant scattering pattern.

In order to compare experimental and calculated diffuse scattering intensities effectively,
it is necessary to calculate scale and offset factors si , oi for each scattering image i . These are
used to produce a set of modified calculated intensities [si A(k)A∗(k)+ oi ] for comparison.
The optimal values of these factors can be calculated automatically:

si = ni
∑

k Ii (k)A(k)A∗(k)− [∑
k Ii (k)

] [∑
k A(k)A∗(k)

]

ni
∑

k [A(k)A∗(k)]2 − [∑
k A(k)A∗(k)

]2
, (4)

oi = 1

ni

[
∑

k

Ii (k)− si

∑

k

A(k)A∗(k)

]
, (5)

where ni is the number of k-points in each set Di . The diffuse scattering ‘mismatch’ function is
then given as the sum of squared differences over all experimental scattering patterns, weighted
by the estimated standard deviation of each data set:

χ2
diff =

∑

i

∑

k∈Di

|Ii (k)− [si A(k)A∗(k)+ oi ]|2
σ 2

i

. (6)

It is usually necessary to exclude from these calculations certain regions of the
experimental diffuse scattering patterns; for example, spots due to Bragg reflections or obscured
regions (such as from the beam stop). To this end, the user may designate a pixel ‘excluded’ by
assigning it a negative intensity. EDRMC automatically ignores any such data point during its
refinement process; however, it will continue to calculate an intensity from the configuration in
the program output.

2.3. Distance window constraints

There is always the danger in any RMC refinement process of producing configurations in
which the interatomic separations for some small percentage of atoms in the configuration
carry unphysical values. Distance window constraints—as implemented in the RMCProfile
method [24]—provide a mechanism of avoiding unphysical moves during RMC refinement
without affecting any correlations that might exist in the configuration [27]. The program
first assigns for each atom a set of neighbours (which may be empty). Also assigned are
minimum and maximum interatomic separations for each pair of neighbouring atoms, defining
a ‘window’ of allowed distances. Any move proposed during the refinement process is first
checked to ensure that it would not cause the separation between neighbouring pairs to fall
outside their corresponding ‘distance window’. As such, the constraint acts to preserve a sense
of connectivity in the configuration, without restricting too greatly the freedom of individual
atoms to move in order to best fit the available data.

2.4. Bond valence restraints

One of the key analytical tools used when interpreting diffuse scattering patterns is a
consideration of the crystal chemistry of the structure in question. That is, whether the
coordination geometries, coordination numbers and bond lengths are appropriate for each atom
in its particular oxidation state. A very useful tool in analysing structures in this way is the

4



J. Phys.: Condens. Matter 19 (2007) 335216 A L Goodwin et al

notion of bond valence sums [28, 29]. These are empirical relationships that express a valence
contribution vi j of each bond in a structure to its length di j :

vi j = exp[(Ri j − di j)/b]. (7)

Here b is assigned a ‘universal’ value of 0.37 Å, and Ri j is an empirical parameter whose
value can be obtained from appropriate tables [30]. The bond valence approach is based on an
observation that the individual valence contributions for a given atom j , summed over all its
neighbours i , tend to give the expected total valence Vj :∑

i

vi j = Vj . (8)

It is straightforward to calculate a value of vi j for each pair of neighbouring atoms in an
EDRMC configuration—and hence an observed valence V ′

j . This provides a mechanism of
restraining atomic bond valences during RMC refinement through inclusion of a bond valence
‘mismatch’ term of the form

χ2
BV =

∑

j

(V ′
j − Vj)

2

σ 2
j

, (9)

where σ j is the standard deviation in bond valences tolerated for atom j .

2.5. Average structure factor restraints

One important concern when using a RMC approach to fit non-quantitative diffraction data is
that there is little practical constraint on the magnitude of atomic displacements produced in the
configurations. Ideally, additional data sets—in the form of x-ray or neutron scattering patterns,
for example—might be combined with an electron diffraction approach to help provide some
of this missing information. In this initial study, however, we have opted to include a structure
factor restraint in lieu of implementing refinement against multiple types of diffraction data.
This restraint involves an additional ‘mismatch’ term that represents the difference between
calculated and expected x-ray structure factors (F ′(hkl) and F(hkl), respectively). The former
can be obtained readily from the EDRMC configuration:

F ′(hkl) = 1

N

∑

j�

f X
j (Qhkl ) exp[iQhkl · r( j�)]. (10)

Here f X
j (Q) is the x-ray scattering form factor of atom j . The relevant ‘mismatch’ term

weights the contribution from each reflection (hkl) by the uncertainty σ(hkl) in the expected
structure factor and is given by

χ2
avg =

∑

hkl

∣∣F ′(hkl)− F(hkl)
∣∣2

|σ(hkl)|2 . (11)

While less elaborate than experimental Bragg intensity refinement [31]—or indeed Bragg
profile refinement [24]—this approach has a number of important advantages. First, the average
structure is usually well known prior to electron diffraction studies, and so a reliable list of
expected x-ray structure factors can be produced without the need to collect additional data.
Second, the calculation of structure factors from the EDRMC configuration is rapid, and so the
average structure can be restrained without significant additional computational cost. Third,
the explicit inclusion of symmetry-equivalent reflections and systematic absences in the list
of refined structure factors helps preserve the overall symmetry of the EDRMC configuration.
Moreover, the incorporation of this restraint in the EDRMC refinement process helps ensure
that the atomic displacements observed in the resultant configurations are as consistent as
possible with the known average structure.
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(a)

(b)

(c)

Figure 1. (a) Representation of the [A2O′][B2O6] pyrochlore structure in terms of its A2O′ and
B2O6 subframeworks. (b) The A2O′ framework consists of a β-cristobalite-like array of corner-
connected [O′A4] tetrahedra. (c) The B2O6 framework is assembled from corner-connected [BO6]
octahedra.

3. Case study: Bi2Ru2O7−δ

3.1. Overview

As a preliminary test case for the EDRMC method, we chose to study the pyrochlore
Bi2Ru2O7−δ. Bi-containing pyrochlores are known to exhibit a number of interesting physical
properties; for example, both Bi2Ru2O7−δ itself and the related Bi2Sn2O7 show promise as
electrocatalysts and as thin film resistors [32–36], Bi2InNbO7 is photocatalytic under UV
radiation [37, 38] and the family (Bi1.5Zn0.5−δ)(Zn0.5Nb1.5)O7−δ has potential applications as
resonators in high-frequency multilayer capacitors [39–41]. Perhaps unsurprisingly, a number
of these materials are known to produce highly structured diffuse scattering patterns in electron
diffraction experiments [40, 42, 43]. In this study, we present a number of electron diffraction
diffuse scattering patterns for Bi2Ru2O7−δ and proceed to refine atomistic models consistent
with these patterns using EDRMC. We show that the observed scattering behaviour is due to
correlated translations of Bi atoms within the structure.

The general pyrochlore structure, corresponding to the chemical formula [A2O′][B2O6],
has Fd 3̄m symmetry and can be considered in terms of two interpenetrating frameworks
(figure 1): a β-cristobalite-like A2O′ network of corner-connected [O′A4] tetrahedra and a
B2O6 array of corner-connected [BO6] octahedra. In the case of Bi2Ru2O7−δ, Bi atoms occupy
the A site and Ru atoms the B site. Previous powder diffraction studies have shown that
the material contains a small proportion of O′ vacancies [32, 44, 45], and in fact a neutron
study suggested that Bi vacancies also occur, such that the overall composition is best given as
Bi1.89(1)Ru2O6.92(1) [44]. We do not consider the issue of vacancy inclusion further in this study,
employing instead the ideal composition Bi2Ru2O7 for simplicity. Indeed we will show that the
diffuse scattering patterns can be accounted for satisfactorily with this composition, and so it is
unlikely that vacancy inclusion plays a significant role in the observed scattering behaviour.

What has emerged from the many average structure determinations of Bi2Ru2O7−δ is that
the Bi and O′ sites are characterized by abnormally large thermal parameters [32, 44–46]. In
the case of the Bi site, the thermal motion is directed perpendicular to the coordinated O′ · · · O′
vector and is strongly anisotropic. A standard thermal ellipsoid does not model this disorder
well; instead models involving split-atom sites have been proposed, and these have suggested
a ‘doughnut’-like distribution of scattering density around this site [44, 45]. Chemically,
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(a)

(c)

(b)

(d)

(e)

(f)

Figure 2. Typical EDPs obtained close to the (a) [112̄], (b) [001], (c) [7̄12], (d) [1̄1̄8], (e) [213̄]
and (f) [1̄70] zone axes. The regions selected for use in EDRMC refinement are enclosed within the
rectangles and were chosen because their reciprocal space coordinates could be determined easily
from the indexed reflections. The reflections indicated respectively by the solid and open arrows
are: (a) [4̄4̄4̄]∗ and [4̄40]∗, (b) [400]∗ and [040]∗, (c) [226]∗ and [084̄]∗, (d) [44̄0]∗ and [531]∗, (e)
[444]∗ and [48̄0]∗, (f) [004]∗ and [711]∗.

this makes sense since bond valence calculations would suggest that the central O′ atom is
significantly over-bonded (VO′ = 2.8); displacement of the average Bi position perpendicular
to the O′–Bi–O′ vector acts to increase each of the O′–Bi bond lengths, helping to alleviate this
situation.

Our approach in this study is to generate a single atomistic configuration that reflects at
once both the quantitative constraints on mean squared displacements provided by average
structure (Bragg) analysis and the qualitative local structure information reflected in the
experimental diffuse scattering patterns. Through analysis of the correlations evident in
this configuration, we hope to develop a semi-quantitative atomistic understanding of the
underlying structural disorder in Bi2Ru2O7−δ .

3.2. Experimental

Bi2Ru2O7−δ was prepared by the solid-state reaction of stoichiometric quantities of Bi2O3

(Aldrich) and Ru (Aldrich) as described previously [45]. The sample was ground into a fine
powder and dispersed onto a holey carbon film for investigation using transmission electron
microscopy (TEM). Electron diffraction patterns (EDPs) were obtained using a Philips EM
430 TEM.

3.3. Electron diffraction results

Figure 2 shows room temperature [112̄], [001], [7̄12], [1̄1̄8], [213̄] and [1̄70] zone axis EDPs.
Structured diffuse scattering is clearly evident in each EDP and assumes the form of sheets
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of diffuse intensity perpendicular to the six 〈110〉 directions of the average structure. This
general motif is very similar in form to that characteristic of β-cristobalite [1, 47]. Quite apart
from its overall periodicity, there are two informative features of this scattering distribution.
First, the scattering is transverse polarised—the intensity of the observed diffuse streaking is
strongest along directions of reciprocal space perpendicular to the streaking itself, and weakest
(indeed absent) along directions parallel to the streaking. Consequently, the scattering arises
from displacive rather than compositional disorder (e.g. vacancy ordering) [1]; moreover, the
displacements responsible are both correlated and directed along the 〈110〉 directions (and
uncorrelated along perpendicular directions). Second, the scattering—which in general terms
runs across the 〈hkl〉∗ ± ε〈hh̄l〉∗ regions of reciprocal space—obeys ‘extinction conditions’
such that, e.g. for diffuse scattering along (11̄0)∗, intensity is only observed whenever h + k =
4n. This implies that the relevant atoms are separated in real space by the vectors 1

4 〈110〉.
In β-cristobalite itself, the scattering behaviour is known to arise from concerted rotations

of ‘chains’ of corner-connected [SiO4] tetrahedra, running along the 〈110〉 directions [47–50].
This form of motion indeed satisfies the requirements implied by the polarization and extinction
conditions observed. The obvious analogy in Bi2Ru2O7−δ would involve a similar regime
of correlated rotations, but instead involving [O′Bi4] tetrahedra. We were interested to see
whether this behaviour could be observed in EDRMC configurations refined against the diffuse
scattering patterns.

3.4. EDRMC analysis

A configuration representing a 10 × 10 × 10 supercell of the Bi2Ru2O7 unit cell was
prepared and each of the 88 000 atoms therein assigned small random displacements from
their crystallographic positions. Before refining against the available electron diffraction data,
the configuration was ‘relaxed’ using only the distance window constraint and structure factor
restraint as implemented in EDRMC. This yielded an appropriate starting configuration with
the correct average structure. The distance windows used were 1.4 � rBi−O � 3.5 Å,
1.4 � rBi−O′ � 3.5 Å, 1.4 � rRu−O � 3.0 Å and 2.2 � rO−O � 3.5 Å. The structure factor
refinement included all reflections (hkl) such that −8 � h, k, l � 8, with expected structure
factors calculated from the structural model termed ‘Model 3’ in [44]. Diffuse scattering
patterns calculated from this initial configuration were completely featureless, as expected.

Suitable regions of each of the six EDPs shown in figure 2 were selected and prepared for
use as input into the EDRMC program by excluding regions of Bragg scattering and the shadow
image of the beam stop. Illustrations of the actual input data used are given in the left-hand
panels of figure 3. An arbitrary acceptable standard deviation of five intensity units per pixel
was applied for each of the six data sets (intensities being measured on a scale of 0 to 255).
These diffuse scattering data were used in conjunction with the distance window constraint
and the structure factor restraints (applied as above) to refine the EDRMC configuration as
described in section 2. After approximately 48 h CPU time, the fits on the right-hand panels
of figure 3 were obtained, without any significant change in the agreement between calculated
and expected structure factors. The level of agreement obtained is clearly very satisfactory, and
confirms that a single EDRMC configuration is capable of convincingly modelling a number of
distinct experimental EDPs.

The configuration itself is shown in figure 4(a) and reveals that the refinement proceeded
without incorporation of any large regions of ‘damage’ or other spurious atomic displacements.
Visual inspection of the O′Bi2 sub-framework reveals that the [O′Bi4] tetrahedra appear not to
have been greatly distorted; moreover there is some evidence for the existence of β-cristobalite-
like correlated rotations of these tetrahedra along 〈110〉 (figure 4(b)). However, it is possible

8
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Figure 3. EDRMC electron diffraction input data (left-hand panels of the two columns) and refined
fits (right-hand panels) for the regions of the experimental EDPs given in figure 2.

to analyse this configuration more systematically, and indeed one key advantage offered by a
real-space configuration such as this is the ability to determine real-space distribution functions
from the reciprocal-space diffraction data. Since—in this case—our diffraction data were fitted
only qualitatively, the distribution functions will not be quantitatively accurate. However, since
the refinement process was guided by (quantitative) structure factor restraints, one might expect
to determine relative trends in the data with some degree of confidence.

Distance distribution functions for nearest-neighbour Ru–O, Bi–O′, Bi–O and Bi–Bi pairs
were determined from our Bi2Ru2O7 configuration and are given in figure 5(a). A number
of comments may be made regarding these. First, all distributions appear reasonable; in
particular, the absence of any truncation effects implies that the ‘distance window’ constraints
used in the refinement process were not applied too constrictively. Second, the Ru–O and
Bi–O′ distributions have similar widths, despite the large discrepancy in thermal parameters
determined from the average structure. This confirms that the Bi/O′ displacements are indeed
strongly correlated. Third, the Bi–Bi distribution is of comparable width to the nearest-
neighbour Ru–O and Bi–O′ distributions—and much sharper than the Bi–O distribution.
Despite the absence of any bonding interaction between Bi/Bi neighbours, their separation
is preserved with a similar rigidity to that of nearest-neighbour ion pairs.

The distribution of Bi–O′–Bi angles within the same configuration is illustrated in
figure 5(b), where it is also compared with that obtained from a configuration refined using
only the average structure factor restraints. The average structures of both configurations
are indistinguishable, but the configuration refined against the EDPs of figure 2 shows a
significantly sharper angular distribution. Taken as a whole, these observations suggest that the
geometry of individual [O′Bi4] tetrahedra is tightly constrained in Bi2Ru2O7−δ and resembles
that of an ideal tetrahedron more strongly than the average structure demands.

A real-space ‘scattering density’ distribution can be obtained by collapsing the entire
10 × 10 × 10 configuration onto a single unit cell (a portion of which is shown in figure 6(a)).
This representation reveals that the Bi atoms are distributed throughout a flat disc-like region,
rather than the ‘doughnut’ topology implicit in the structure factor restraints. This distribution
is consistent with previous Monte Carlo simulations of cristobalite-like systems, where the
superposition of tetrahedral-tilt modes across all 〈110〉 directions was shown to give similar
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(a)

(b)

Figure 4. (a) Polyhedral representation of the EDRMC-refined Bi2Ru2O7 configuration,
corresponding to a 10 × 10 × 10 supercell of the known crystallographic unit cell, viewed down the
[11̄0] crystal axis. (b) A small region of a (11̄0) slice of the O′Bi2 subframework in the configuration
represented in terms of [O′Bi4] tetrahedra. Rigid unit mode-type tetrahedral-tilting displacements
can be observed in several places (some examples are highlighted in bold).

disc-like distributions [40]. It is possible that this strongly anisotropic distribution is difficult
to refine in powder diffraction analyses without the use of split-site models (which inherently
produce ‘doughnut’-shaped distributions).

Having established the various distributions implied by the electron diffraction images,
we proceeded to investigate in greater detail the atomistic origin of the observed diffuse
scattering patterns. What we are asking here is whether any explicit signature of the key
atomic correlations responsible for the EDPs could be discerned from within the EDRMC
configuration? Our approach is to calculate the set of Fourier displacement coefficients Tjα

for each atom j and Cartesian axis α [12]:

Tjα(k) =
√

m j

N

∑

�

uα( j�) exp[ik · r( j�)], (12)

where m j are the atomic masses and uα( j�) the deviation of each atom from its average position
r( j�). Then the sums

ϕ( j) =
∑

k∈diffuse

∑

α

∣∣Tjα(k)
∣∣2

(13)
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Figure 5. (a) Nearest-neighbour distance distribution functions extracted from the EDRMC
Bi2Ru2O7 configuration. (b) Intrapolyhedral Bi–O′–Bi bond angle distribution for an EDRMC
configuration refined only against average structure factors and that obtained for the EDP/average-
structure-refined EDRMC configuration. The dashed vertical line represents the ideal tetrahedral
bond angle [= cos−1

(− 1
3

)
].

(a) (b)

Figure 6. Scattering density distributions for a typical O′
2Bi7 structural unit extracted from (a)

EDP/average-structure-refined and (b) EDP/bond-valence-refined EDRMC configurations.

give mass-weighted ‘participation coefficients’ in the diffuse scattering for each atom. What
these coefficients tell us is to what extent the motion of each atom is correlated along the wave-
vectors associated with the diffuse scattering; the values calculated for each atom type are
given in table 1. It is clear from this analysis that Bi displacements are indeed almost entirely
responsible for the displacements from which the diffuse scattering patterns arise. We note that
access to large numbers of independent configurations would allow calculation of both phonon
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(a)

(b)

Figure 7. Correlated atomic displacement patterns derived from (a) EDP/average-structure-refined
and (b) EDP/bond-valence-refined EDRMC configurations. In both cases the net Bi displacements
occur parallel to the 〈110〉 axes, and are uncorrelated along perpendicular directions.

Table 1. Atomic diffuse scattering participation coefficients ϕ( j) (×10−45 kg m2) calculated from
the EDRMC configuration as described in the text.

j Bi Ru O O′

ϕ( j) 0.26(2) 0.017(4) 0.019(2) 0.030(2)

frequencies (which in this case will share the semi-quantitative nature of the diffuse scattering)
and mode eigenvectors from the Tjα [12, 51]; however such an analysis is beyond the scope of
this present investigation.

To summarize, what our EDRMC configuration has told us is that (i) the EDPs arise due to
Bi translations correlated along the 〈110〉 directions, (ii) the [O′Bi4] tetrahedra are rigid and (iii)
the Bi displacements are normal to the O′ · · · O′ vectors. These observations are consistent only
with a model in which the O′Bi2 lattice supports a superposition of [O′Bi4] tetrahedral-tilting
modes of the sort illustrated in figure 7(a). These modes are direct analogues of the rigid unit
modes (RUMs) found in β-cristobalite [52, 53], although it is of course impossible to determine
whether the displacements in Bi2Ru2O7−δ reflect static or dynamic disorder. The displacement
pattern illustrated in figure 7(a) involves acentric translations of charged ions, and so will be
associated with a change in dipole moment. Because the mode gives rise to observable EDPs,
it is likely to be associated with a very low-frequency phonon mode (irrespective of whether
the disorder in the native material is dynamic or static), and so may explain the ease with which
a large net dipole moment can be supported in bulk samples.

We conclude our discussion of Bi2Ru2O7−δ by considering the role played by bond valence
constraints in the refinement process (these constraints were not employed in the analysis
presented above). We found that very satisfactory fits to the experimental EDPs (comparable to
those shown in figure 3) could be obtained by including bond valence restraints but excluding
the average structure factor restraints. Despite reproducing the known diffuse scattering
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Table 2. Average bond valence values calculated from Bi2Ru2O7 EDRMC configurations.
Standard deviations are given in parentheses.

Refinement strategy Bi Ru O O′

Average structure onlya 3.7 (1.1) 4.4 (1.0) 2.2 (0.4) 3.2 (0.8)
EDPs and average structure 3.4 (0.7) 4.2 (0.6) 2.0 (0.3) 3.0 (0.5)
EDPs and bond valences 3.0 (0.2) 4.1 (0.2) 2.0 (0.2) 2.2 (0.2)

a Average bond valences determined from supercell configurations will generally be greater than
the expected value as calculated from average atomic coordinates, since the latter neglects the effect
of atomic displacements.

patterns, and indeed giving very favourable average bond valences across the configuration,
the average structure observed in this second configuration was entirely inconsistent with the
known Bragg intensity data. A scattering density distribution of part of the O′Bi2 subframework
is shown in figure 6(b), from which it is apparent that (i) the Bi displacements are oriented
parallel to the average O′ · · · O′ vectors and (ii) the magnitude of the Bi and O′ displacements
is unphysical.

In the absence of average structure data, the EDRMC procedure had arrived at a second
possible solution to the diffuse scattering, based on the correlated displacements illustrated in
figure 7(b). In this displacement pattern, the Bi and O′ atoms move primarily along the 〈110〉
directions in such a way that the distance between each O′ atom and three of its four coordinated
Bi atoms remains constant, while the remaining O′–Bi bond length increases substantially.
This has the effect of lowering the O′ bond valence significantly, while also effecting a minor
decrease in that of the Bi atoms (table 2). Importantly, the displacements so produced do not
affect the bond valence sums within other parallel chains of [O′Bi4] tetrahedra, and so are
uncorrelated along directions perpendicular to the 〈110〉 axes.

While this second ‘solution’ gives highly distorted [O′Bi4] tetrahedra and clearly possesses
the incorrect average structure, it does in fact produce a more reasonable ensemble of bond
valences than the RUM-type configuration described initially (table 2). The intriguing question
follows of why this particular displacement pattern is not found to occur in practice. What
appears to be the case is that the very large displacements necessary to reduce bond valences
to their ideal values act to bring non-bonded atom pairs into closer proximity than is physically
reasonable; in particular a significant proportion of Bi · · · Bi pairs are separated by distances
shorter than those observed in Bi metal. Consequently, we certainly do not believe that the
bond-valence-driven EDRMC configuration represents a viable model of structural disorder
in Bi2Ru2O7−δ . Nevertheless, it is of some interest that the same diffuse scattering patterns
could be accounted for by a rather different—if not unrelated—set of correlated atomic
displacements. Perhaps in other structurally related systems the balance between these two
types of motion is less obvious; our results at least caution against the automatic interpretation
of β-cristobalite-type EDPs in terms of RUMs alone.

We note that unphysical interatomic distributions may often be allowed in bond-valence-
driven RMC simulations, given that the bond valence calculations do not constrain all atom
types equally. In the case of Bi2Ru2O7−δ , there are no explicit constraints on the Bi · · · Bi
separations; whereas the average structure factors will place quite definite limits on the spread
of distances allowed. We did explore the possibility of employing both average structure and
bond valence restraints within the same EDRMC refinement. This produced a continuous
spectrum of configurations, where the particular bond valence σ j and average structure factor
σ(hkl) values determined the extent to which the resulting solution resembled that obtained
using either restraint by itself. Because we felt a compliance with the known average structure
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was more meaningful in this case than the existence of ‘correct’ bond valence sums, we expect
the average structure factor refinement produced the more physically realistic structural model.

4. Summary and conclusions

What our study has achieved is to illustrate that the reverse Monte Carlo method can be
successfully used to refine atomistic configurations consistent with experimentally observed
EDPs. As described, the approach provides a semi-quantitative method for extracting real-
space distributions from these EDPs, yielding valuable insight into local structure otherwise
unobtainable from average structure analysis alone. Because electron diffraction is a routine
method capable of being used with polycrystalline samples, there is significant scope for
application to a range of materials with unusual physical properties.

We have also identified a general need for caution when applying constraints/restraints to
the EDRMC refinement process. In particular, while bond valence sums are widely used as a
means of understanding disorder in crystalline materials, we found that a bond-valence-driven
refinement of Bi2Ru2O7−δ EDPs gave a spurious solution to the data. Instead, restraining the
average structure of the EDRMC configuration to match that obtained from Rietveld refinement
gave what we believe to be the correct structural interpretation of displacive disorder in the
material. This is not to say that bond valence restraints will be inappropriate for EDRMC
studies in general; however, care should be taken to ensure their use does not jeopardise
the ability to reproduce experimental data. We note that the use of bond valence sums to
identify likely mechanisms of disorder from average structure solutions (e.g. as used in [43, 54])
differs fundamentally from their application as local structure restraints in atomistic simulations
such as RMC. Precisely how this difference would be reflected in the structural models so
obtained is by no means obvious. What is known is that the available bond valence parameters
are calculated from average structure refinements [29, 30], and so the extension to atomistic
configurations may not follow automatically.

The inclusion of additional data-based restraints on the refinement process would be
expected to substantially improve the quality of the models obtained. In this respect, the
parallel refinement of EDPs with, for example, powder neutron and/or x-ray diffraction data is
an obvious future direction for expansion of the EDRMC method. There will also be instances
where the incorporation of geometric restraints—additional χ2 terms which act to favour
ideal coordination polyhedral geometries—would produce yet more realistic structural models.
Nevertheless, this work has helped establish that real-space analysis of electron diffraction data
is a viable analytical tool and can yield valuable new information when studying structural
disorder in crystalline materials.
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